
Under Construction:
Testing And Debugging
by Bob Swart

After over a year of intensive
Delphi component and expert

building in this column, this month
we’re going to focus our attention
on component testing and debug-
ging. Most of the techniques I
discuss will work with both Delphi
1 and Delphi 2.

Making sure your components
really work is very important, espe-
cially if you (and possibly your col-
leagues) plan to re-use them over
and over again. You can fix bugs
during design, implementation,
beta testing and finally when the
system is delivered and the client
discovers something is wrong.
Remember that the cost of fixing a
bug increases (almost exponen-
tially) as time goes by. It’s fairly
cheap to fix a logical design bug
while you’re still in the design
phase, but it’ll cost you a whole
heap more when the bug is discov-
ered by your client, two weeks after
the system has been installed...

Debugging By Design
You can help prevent bugs by mak-
ing a good solid design beforehand.
For big projects you may even use
an OO design methodology, like
the Object Modeling Technique of
James Rumbaugh et al, described
in the book Object-Oriented Model-
ing and Design, Prentice-Hall, ISBN
0-13-630054-5. This book will teach
you how to write a solid design
using a proven technique.

But what about components?
Often, a component builder is just
a component hacker, putting some
handy code into a re-usable class.
The Delphi compiler is fast enough
to offer you an iterative component
building path and so you decide to
worry about the design and docu-
mentation later. However, I believe
that for all but the simplest of
components it’s still best to write a
design, since it could save you a lot
of time later on.

Debugging Comments
Once you start coding, there’s one
thing you must do: use comments!
In a few months time, you (or some-
one else) will take a look at the
same sections of code again and
wonder what you were thinking
when you wrote them. Comments
are especially important if you
don’t have the design documented
the way you should have, for exam-
ple when you’re using Delphi as a
RAD prototyping tool.

If you are writing code that may
be used with both Delphi 1 and 2,
then watch out for // comments,
which are valid only in Delphi 2.

One final remark about com-
ments: keep them up-to-date.
There’s nothing worse than a piece
of code and accompanying com-
ment which contradict each other.
As Murphy used to say: if the code
and comment disagree, then both
are probably wrong.

Debugging Names
Naming conventions come in all
shapes and sizes. A good book that
includes information on naming
conventions (and lots of other
useful coding guidelines) is Code
Complete by Steve McConnell (MS
Press, ISBN 1-55615-484-4). This is
an excellent book with many gems
on software construction. If you
are a professional software engi-
neer, then you should read it. If
you’re working in a team, make
sure the entire team reads it!

You should use prefixes so that
like components are grouped
together in the Object Inspector. It
makes it much easier to locate a
particular component. It doesn’t
matter exactly what prefixes you
use, as long as everyone can easily
identify them, and you are consis-
tent (at least within a single
project).

Tables and queries always get
their full name (eg TableBIOLIFE for

the table connected to BIOLIFE.DB)
and the same happens to the data-
aware controls that connect to the
fields: prefixed with the native
(non-data-aware) field, but post-
fixed with the database or table
name and the name of the field, eg
MemoTableBIOLIFENotes.

Even within a component we
should use naming conventions,
such as an F prefix for a hidden field
that holds the property value, and
Get and Set prefixes for property
methods.

Early Component Pitfalls
Almost every component writer
must have made the mistake
shown in Listing 1 at least once (or
is a good straight-faced liar).
Now why doesn’t this code work
correctly? In fact, it doesn’t seem
to work at all, especially if you de-
rive from components higher in the
hierarchy (like a TEdit or TTable)
and want to add your own behav-
iour. We’ve forgotten to tell the
compiler that we wanted to over-
ride the behaviour of the Create
constructor. Since we didn’t in-
clude the override keyword, the
compiler is happily creating a new
constructor Create, making the
previous one invisible in our scope
and hence not callable! We’d end
up never initialising the compo-
nent we are descending from: a
serious mistake.

In my view, this should at least
merit a warning from the compiler
(we have warnings now, why not
use them for this as well, please,
Borland?). Speaking of warnings, if
you try to catch bugs and problems
early on, then you should always
have warnings as well as hints
enabled in your compiler options. I
always make sure to have elimi-
nated most of them, or at least
write comments to explain why the
hint or warning is still present at
that point.

34 The Delphi Magazine Issue 14

Error 202 in COMPLIB
The Get and Set methods that are
used to get and set values of prop-
erties can be used to implement
pre- and post-conditions as well as
regular value checking. They can
also contain unintentional errors.

Consider class TBuggy in Listing
2, a component derived from
TComponent, with one property Data,
which reads the value from an

internal field FData and writes it
back using a SetData method. The
SetData method can now be used to
check for a valid value of Data.

If you add TBuggy to the compo-
nent palette of Delphi, then at first
sight nothing is wrong – until you
set the value of the Data property
to a value other than 0. In Delphi 1
it happens real fast, Delphi 2 lets
you wait a little bit longer (actually
16 bits longer), but they both give
a stack overflow error.

Since Delphi 2 has a much larger
(potential) stack than Delphi 1, it
takes more time for Delphi 2 to
overflow the stack. Delphi 1 has a
stack limited to 64Kb minus the
data segment size and the local
heap size. The default Delphi 1
stack size is 8Kb, although I often
increase this to 32Kb. You can get
an overview of these figures after
you’ve compiled your project from

the Information dialog. A stack
overflow in Delphi 1 can be caused
by string processing, too many lo-
cal variables on the stack (in a local
routine) or infinite recursion.

Delphi 2 can have a much bigger
stack: the minimum is set to 16Kb,
the maximum to 1Mb. Hence, a
stack overflow in Delphi 2 is most
often caused by infinite recursion,
since the stack is generally too big
to have any problems with local
variables or short strings on the
stack and Delphi 2 long strings are
allocated on the heap.

So, assuming that recursion is
the problem in this case, where did
we use recursion? Actually, this is
the danger of using properties, hid-
den fields and property methods.
You name the field with an F prefix,
name the methods with Get and Set
prefixes, but you still think of it as
the regular property name (Data,
not FData or SetData).

This is where the mistake hap-
pens, as SetData checks the Data
property and updates it if the new
value is not already equal to the
existing one. But in that case,
SetData sets the value of the Data
property, which in turns causes a
call to... SetData. This is a typical
case of hidden property method
recursion, which can be really
dangerous!

Recursion In Delphi 2
Consider the following example of
TBoom (Listing 3). I’ve fixed the
SetData method (this is what it
should look like: accessing the
FData field that holds the value, not
the Data property itself), but I’ve
also introduced another method
GetData to obtain the value of the
property. For the purpose of show-
ing you the dangers that can hap-
pen, I’ve made the mistake of
looking at the Data property, which
causes another call to GetData to
obtain the value for the Data prop-
erty, which calls GetData again and
again, until we get a stack error
exception again, right? Wrong!

This time, when we register the
TBoom component within Delphi
something even worse happens. If
we drop the component on a form
the Object Inspector will try to dis-
play the property values. So, it will

unit Buggy;
interface
uses Classes;
Type
 TBuggy = class(TComponent)
 private
 FData: Integer;
 protected
 procedure SetData(NewData: Integer);
 published
 property Data: Integer read FData write SetData;
 end {TBuggy};
 procedure Register;
implementation
procedure TBuggy.SetData(NewData: Integer);
begin
 if NewData <> Data then { only if changed }
 Data := NewData
end {SetData};
procedure Register;
begin
 RegisterComponents(’Dr.Bob’,[TBuggy])
end;
end.

Type
 TBug = class(TComponent)
 constructor Create(
 AOwner: TComponent);
 end;
implementation
constructor TBug.Create(
 AOwner: TComponent);
begin
 inherited Create(AOwner);
 ...
end;

➤ Listing 1

unit Boom;
interface
uses Classes;
Type
 TBoom = class(TComponent)
 private
 FData: Integer;
 protected
 function GetData: Integer;
 procedure SetData(NewData: Integer);
 published
 property Data: Integer read GetData write SetData;
 end {TBoom};
 procedure Register;
implementation
procedure TBoom.SetData(NewData: Integer);
begin
 if NewData <> FData then FData := NewData
end {SetData};
function TBoom.GetData: Integer;
begin
 GetData := Data { boom! }
end {GetData};
procedure Register;
begin
 RegisterComponents(’Dr.Bob’,[TBoom])
end;
end.

➤ Listing 3

➤ Listing 2

October 1996 The Delphi Magazine 35

call the GetData method of our
TBoom component, again and again,
until we get the message shown in
Figure 1. The bad thing is if we click
Close then Delphi will actually
close, taking all our unsaved
changes with it! Which leads to one
very important rule for component
builders: inside the component
class, never use the property name
itself, but always refer to the inter-
nal field that holds the value.

IDE Debugger
Let’s assume we’ve made all efforts
to prevent bugs during the design
and implementation. Murphy will
make sure there’s always one more
bug, which means it’s time to
switch over to the debuggers!

Most of us are using exceptions
to split the algorithm (and error
detection) from the error handling
and recovery. However, when us-
ing exceptions together with the
internal IDE debugger, you must be
aware of the Break on Exceptions
option in the Environment Options |
Preferences page. It’s on by default,
but I find it just causes confusion.

External Debugger
We can also use the standalone
Turbo Debugger for Windows
(TDW). Why would we need TDW if
we can already debug from the IDE
itself? Well, you need it to debug
DLLs, or view mixed source listings
(eg a Delphi DLL and a C++ pro-
gram). TDW is included in the RAD
Pack (for Delphi 1) and Turbo
Assembler 5.0 (for Delphi 2).

Creative Debugging
No matter how good the debugging
tool you use, the best debugger is
always the one between your ears.
If that debugger doesn’t have a clue
where to search for a bug, it’ll be a
long night... A good book that
shows many useful techniques is
Debugging – Creative Techniques
and Tools for Software Repair by
Martin Stitt (Wiley, ISBN 0-471-
55831-1). It was first published in
1992 but the techniques are still
valid and enjoyable to read about.

MessageDlg Debugging
I often use message dialogs for de-
bugging. For example, in many

event handlers, I insert code with
an {$IFDEF} that shows or doesn’t
show a MessageDlg with some
status information, like the
pseudo-code shown in Listing 4,
from an OnBeforePost event.

The code shown uses Format to
show me some of the key fields of
the record to be posted and if I
don’t click the Yes button an excep-
tion will be generated which, in this
case, will prevent the record from
being posted. Of course, the excep-
tion part is optional, the important
thing is to be able to check some
critical values while the program is
running. For production code, just
un-define DEBUG.

Log Files
MessageDlg debugging is nice, but
may get you into trouble when de-
bugging anything to do with mouse
clicks. Since the mouse down will
often initiate a click, the MessageDlg
will come up and automatically eat
your mouse up! If you then close
the dialog, you won’t have received
the mouse up message: the button
will remain down and you will need
to do another mouse down to get
yet another mouse up.

In order to prevent that, I often
write mouse or keyboard input
events to a log file instead and
check the contents of the file after-
wards. Of course, this means I can’t
check the log file until the
program’s completed.

WinCrt And CONSOLE
Did you know that even if you have
a form-based application you can
still use WinCrt (for Delphi 1) or
make it a CONSOLE application (for
Delphi 2)? I didn’t, until I found out
by accident (I used a unit that had
a uses WinCrt inside and did some
WriteLns). You can actually have a
floating WinCrt window next to your
application and use WriteLn inside
your application to put stuff into
this window. This overcomes the
limitations of a log file.

For Delphi 2 just define {$APPTYPE
CONSOLE} at the top of your project
file and you’re ready to go. For
Delphi 1 make sure every unit that
contains WriteLn statements has
WinCrt in the uses clause.

Design Versus Run Time
Remember that a component can
have two behaviours: one at design
time (the code in the Component
Library) and one at run time (the
.DCU file on disk). They can actu-
ally differ because one version may
be older than the other (you may
have updated the component
source and re-compiled it to a
newer .DCU file, while the loaded
Component Library still contains
the older version).

You can distinguish between
design time and run time in your
components by checking the flag
cdDesigning in the ComponentState:
see Listing 5.

➤ Figure 1

{$IFDEF DEBUG}
 if MessageDlg(Format(’Post record %s %s %s ?’,[f1,f2,f3]),
 mtConfirmation, [mbYes, mbNo], 0) = mbNo then
 Exception.Create(’Don’’t post this record!’)
{$ENDIF}

➤ Listing 4

36 The Delphi Magazine Issue 14

reAct
There’s a new third party tool avail-
able for Delphi that will help you
test and debug your components.
It’s called reAct and is from Eagle
Software, who brought us the CDK.
reAct enables us to test a single
component, but it can interact with
other components. For each case,
a new special test project is set up
by reAct. Testing the component
involves merely compiling and
running the generated test project,
which not only shows the test
form, but also a Component
Inspector and Event Logfile.

One of the strong points of reAct
is that it lets us follow the chain of
events, by showing them as lights
that flash on and off when the
events are triggered (Figure 2).
Apart from that, you can set any
property within the reAct Compo-
nent Inspector (the reAct version
of the Object Inspector), follow any
event and still work with your com-
ponent(s) as if you’re in a real
application. The log file can be
viewed while testing and of course
saved and printed afterwards. The
generated source code for the test

project is available to expand (and
you’ll see the conditional INT $3
statements which cause debugger
breakpoints that you can set auto-
matically from within your reAct
test program).

Every now and then (when
you’re doing new or complex
things) you’ll get a message from
Mr CDK who offers helpful advice.

While this is not intended to be a
product review (I’ve barely
scratched the surface here), I
didn’t want to leave reAct out of the
list of books, tools and techniques
that are helpful for testing and
debugging our components.

Currently, reAct is only for
Delphi 2, but a 16-bit version is in
the works as I write this in early
September. For more information
or some neat demos, visit
http://eagle-software.com.

Delphi 2 And NT 4.0 Beta 2
A final problem to end with: it has
become clear that Windows NT 4.0
beta 2 has a problem with unload-
ing (cached) DLLs that do not have
the .DLL extension (like the compo-
nent library, CMPLIB32.DCL). This

unfortunately means that after a
rebuild of the Delphi 2 component
library (like after installing a new
component), the library is not un-
loaded correctly and cannot be
re-loaded. This causes an error 998
in Delphi.

The workaround is to bring NT
down, start it up again and reload
Delphi. At that time, you will see
your new component library with
the newly installed components.

You actually need to do this
every time when your
CMPLIB32.DCL has been unloaded
(so maybe also if you stop Delphi
and start it again). It’s not nice, but
it’s a bug in NT, and Microsoft is
said to have fixed it for the final
release, which should hopefully be
out by now, so this is one more
reason to go out and get it instead
of using the betas!

Another solution, proposed by
Mike Scott, is to rename
CMPLIB32.DCL to CMPLIB32.DLL
(since it is in fact a DLL), which will
tell NT that it should be unloaded
properly. You have to open the
.DLL version with the Open Library
dialog, but after that all new com-
ponents will be added to this ‘DLL’
version of CMPLIB32).

Conclusions
This month, we’ve been through
some ways to help debugging and
to prevent debugging of your com-
ponents. The techniques, books
and tools mentioned can support
you in your hunt for bugs, but in the
end it all comes down to the biggest
debugger of all: the human mind.
And speaking of the human mind
and intelligence, next time we’ll fo-
cus on how to build some Artificial
Intelligence components, an area
my company Bolesian has been in
for almost 15 years now.

Bob Swart (aka Dr.Bob, email
100434.2072@compuserve.com) is
a professional software developer
using Borland C++ and Delphi for
Bolesian and a freelance technical
writer. In his spare time he likes to
watch video tapes of Star Trek
Voyager and Deep Space Nine
with his 2.5 year old son Erik Mark
Pascal.

➤ Figure 2

If csDesigning in ComponentState then begin
 writeln(’CompLib’);
 MessageDlg(’You are in Design Mode’, mtInformation, [mbOk], 0)
end else begin
 writeln(’EXE’);
 MessageDlg(’You are in .EXE Mode’, mtInformation, [mbOk], 0)
end;

➤ Listing 5

38 The Delphi Magazine Issue 14

	Debugging By Design
	Debugging Comments
	Debugging Names
	Early Component Pitfalls
	Error 202 in COMPLIB
	Recursion In Delphi 2
	IDE Debugger
	External Debugger
	Creative Debugging
	MessageDlg Debugging
	Log Files
	WinCrt And CONSOLE
	Design Versus Run Time
	reAct
	Delphi 2 And NT 4.0 Beta 2
	Conclusions

